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1 Applications of the Sylow theorems

1.1 Groups of order p", pq, and p?q

Proposition 1.1. Groups of order p™ with n > 1 are not simple.

Proof. Assume for contradiction that G is simple. Note that Z(G) ||G|| and is nontrivial.
So Z(G) = G, which makes G abelian. So G has order p. O

Proposition 1.2. Groups of order pq with primes p < q have a normal subgroup of order
q and are cyclic if ¢ # 1 (mod p).

Proof. Note that ng(G) | p, and ny(G) =1 (mod ¢q). So nye(G) = 1. By Sylow’s theorem,
Q@ < G, where @ is a Sylow-q subgroup. So PQ = G, and PNQ = {e}, so G = Q x P. This
gives a homomorphism ¢ : P — Aut(Q). Moreover, Aut(Q) = (Z.qZ)* = Z/(q—1)Z. The
map ¢ is trivial unless ¢ 2 1 (mod p). If it is trivial, then G = P x Q = Z/pZ X 7./qZ =
Z]pqZ. O

Proposition 1.3. Groups of order 255 are cyclic.

Proof. Factor 255 = 3-5-17. By the Sylow theorems, n17(G) = 1, so we hav a normal
Sylow 17-subgroup P such that G/P = Z/15Z. Look at n3(G) and n3(G). Note that
n3(G) =1 or 85, and n5(G) = 1 or 51. If n3(G) = 85, we get 2-85 = 170 elements of order
3. If n5(G) = 51, we have 4 - 51 = 204 elements of order 5. We cannot have both, so we
either have a normal Sylow 3-subgroup or a normal Sylow 5-subgroup Q.

Then PQ < G, and R is a Sylow-4 or Sylow-3 subgroup. Then G = PQ x R, with
a homomorphism R — Aut(PQ). Since PQ is cyclic, Aut(PQ) = Z/16Z x Z/2Z or
ZJ16Z x Z/AZ. Since R has order prime to 2, this homomorphism is trivial. So we get
G =P xQxRXZ/255Z. O

Proposition 1.4. Groups of order p>q with p,q prime are not simple.



Proof. If p > ¢, then n,(G) = 1 (mod p) and ny(G) | ¢, so ny(G) =1. If ¢ > p. ng(G) =1
or p%. Assume n,(G) = p*. Then p?> = 1 (mod q), so q | (¢—1) or ¢ | p+ 1. Since ¢ > p,
we cannot have ¢ | (p — 1), so we must have ¢ | (p + 1), which gives p = 2 and ¢ = 3.
So n2(G) = 3, and ny(G) = 4. So there are 8 elements of order 3 and at least 3+ 2+ 1
elements of 2-power order. But this gives 14 elements, which is greater than 12 = 22.3. O

1.2 Subgroups of 5,

Proposition 1.5. Suppose that G is finite, simple, and p | |G| (but p f||G|). Then G is
isomorphic to a subgroup of Sy, where n = n,(Q).

Proof. G acts on Syl,(G) by conjugation. There are n such Sylow p-subgroups, so this gives
a homomorphism p : G — S,, such that ker(p) < G. If ker(p) = 1, then G is isomorphic to
a subgroup of S,,. If ker(G) = G, the action is trivial but also transitive. So there exists a
unique, therefore normal, Sylow p-subgroup. O

Proposition 1.6. There are no simple groups of order 160.

Proof. Factor 160 = 2° - 5. If G is simple and |G| = 160, the n5(G) = 16 and no(G) = 5.
So G is isomorphic to a subgroup of S5. But |S5| = 5! = 120, which is a contradiction. [

Proposition 1.7. Let H, K < G with H, K finite. Then |HK|= |H||K|/|H N K|.
Proof. Consider the bijection H/(H N K) — HK/K. Finish the rest for homework. [
Proposition 1.8. There are no simple groups of order 48.

Proof. Factor 48 = 2% .3. If G is simple, n2(G) = 3. Let P,Q be Sylow 2-subgroups of
G. Then [P N Q| = |P||Q|/|PQ| = 256/|PQ)|. Since |PQ > 48, we get |[P N Q| > 4. So
|PNQ| =8, which gives |PQ| = 32. Then PNQ I P,Q. So Ng(PNQ) 2 PQ must equal
G, and we get that PN Q < G. O

This is a special case of the following proposition.

Proposition 1.9. Let p" || |G|, and suppose that |P N Q| < p™~" for some r > 1 for all
Sylow p subgroups P # Q. Then ny(G) =1 (mod p").

Proof. The idea is to show that PN Q = P N Ng(Q). We will do this next time. O
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