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1 Applications of the Sylow theorems

1.1 Groups of order pn, pq, and p2q

Proposition 1.1. Groups of order pn with n > 1 are not simple.

Proof. Assume for contradiction that G is simple. Note that Z(G) ‖G‖ and is nontrivial.
So Z(G) = G, which makes G abelian. So G has order p.

Proposition 1.2. Groups of order pq with primes p < q have a normal subgroup of order
q and are cyclic if q 6≡ 1 (mod p).

Proof. Note that nq(G) | p, and nq(G) ≡ 1 (mod q). So nq(G) = 1. By Sylow’s theorem,
Q E G, where Q is a Sylow-q subgroup. So PQ = G, and P ∩Q = {e}, so G = QoP . This
gives a homomorphism ϕ : P → Aut(Q). Moreover, Aut(Q) = (Z.qZ)× ∼= Z/(q− 1)Z. The
map ϕ is trivial unless q ∼= 1 (mod p). If it is trivial, then G = P ×Q = Z/pZ× Z/qZ ∼=
Z/pqZ.

Proposition 1.3. Groups of order 255 are cyclic.

Proof. Factor 255 = 3 · 5 · 17. By the Sylow theorems, n17(G) = 1, so we hav a normal
Sylow 17-subgroup P such that G/P ∼= Z/15Z. Look at n3(G) and n5(G). Note that
n3(G) = 1 or 85, and n5(G) = 1 or 51. If n3(G) = 85, we get 2 · 85 = 170 elements of order
3. If n5(G) = 51, we have 4 · 51 = 204 elements of order 5. We cannot have both, so we
either have a normal Sylow 3-subgroup or a normal Sylow 5-subgroup Q.

Then PQ E G, and R is a Sylow-4 or Sylow-3 subgroup. Then G = PQ o R, with
a homomorphism R → Aut(PQ). Since PQ is cyclic, Aut(PQ) ∼= Z/16Z × Z/2Z or
Z/16Z × Z/4Z. Since R has order prime to 2, this homomorphism is trivial. So we get
G = P ×Q×R ∼= Z/255Z.

Proposition 1.4. Groups of order p2q with p, q prime are not simple.
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Proof. If p > q, then np(G) ∼= 1 (mod p) and np(G) | q, so np(G) = 1. If q > p. nq(G) = 1
or p2. Assume nq(G) = p2. Then p2 ∼= 1 (mod q), so q | (q − 1) or q | p+ 1. Since q > p,
we cannot have q | (p − 1), so we must have q | (p + 1), which gives p = 2 and q = 3.
So n2(G) = 3, and nq(G) = 4. So there are 8 elements of order 3 and at least 3 + 2 + 1
elements of 2-power order. But this gives 14 elements, which is greater than 12 = 22 ·3.

1.2 Subgroups of Sn

Proposition 1.5. Suppose that G is finite, simple, and p | |G| (but p 6 ‖|G|). Then G is
isomorphic to a subgroup of Sn, where n = np(G).

Proof. G acts on Sylp(G) by conjugation. There are n such Sylow p-subgroups, so this gives
a homomorphism ρ : G→ Sn such that ker(ρ) E G. If ker(ρ) = 1, then G is isomorphic to
a subgroup of Sn. If ker(G) = G, the action is trivial but also transitive. So there exists a
unique, therefore normal, Sylow p-subgroup.

Proposition 1.6. There are no simple groups of order 160.

Proof. Factor 160 = 25 · 5. If G is simple and |G| = 160, the n5(G) = 16 and n2(G) = 5.
So G is isomorphic to a subgroup of S5. But |S5| = 5! = 120, which is a contradiction.

Proposition 1.7. Let H,K ≤ G with H,K finite. Then |HK| = |H||K|/|H ∩K|.

Proof. Consider the bijection H/(H ∩K)→ HK/K. Finish the rest for homework.

Proposition 1.8. There are no simple groups of order 48.

Proof. Factor 48 = 24 · 3. If G is simple, n2(G) = 3. Let P,Q be Sylow 2-subgroups of
G. Then |P ∩ Q| = |P ||Q|/|PQ| = 256/|PQ|. Since |PQ > 48, we get |P ∩ Q| > 4. So
|P ∩Q| = 8, which gives |PQ| = 32. Then P ∩Q E P,Q. So NG(P ∩Q) ⊇ PQ must equal
G, and we get that P ∩Q E G.

This is a special case of the following proposition.

Proposition 1.9. Let pn || |G|, and suppose that |P ∩ Q| ≤ pn−r for some r ≥ 1 for all
Sylow p subgroups P 6= Q. Then np(G) ≡ 1 (mod pr).

Proof. The idea is to show that P ∩Q = P ∩NG(Q). We will do this next time.
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